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Notation

Notation: Second-order-curve
The three points of a triangle ∆ABC are on a second-order-curve
R of the form

ax2 + bxy + cy2 + dx + ey + f = 0

with a2 + b2 + c2 6= 0. While A and B are fixed, C can move
freely along the curve.

Remark The Graph is a parabola, an elipse or a hyperbola.
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Preliminary Lemma

Lemma 1: Inner Points A′(x ′
1, y ′

1),B ′(x ′
2, y ′

2),C ′(x ′
3, y ′

3)

A(x1, y1),B(x2, y2),C(x3, y3), λ1 = |AE |
|AC | , λ2 = |CD|

|DB| , λ3 = |BB′|
|B′E |

⇒ x ′
i =

xi + λixi+1 + λiλi+1xi+2
1 + λi + λiλi+1

, y ′
i =

yi + λiyi+1 + λiλi+1yi+2
1 + λi + λiλi+1
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Proof Preliminary Lemma

Lemma 1: Proof via Menelaus’s Theorem

AE
AC

· CD
DB

· BB ′

B ′E
= 1

Remark Menelaus’s Theorem can be proven with the intercept
theorem
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Question 1. The Incentre

Coordinate of the incentre I

I
(

mx1 + nx2 + qx3
m + n + q ,

my1 + ny2 + qy3
m + n + q

)

proof idea: Lemma1 with λ1 = n
m , λ2 = q

nλ3 = m
q

and BC = m,AC = n,AB = q.
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Question 2. The Orthocentre

Coordinate of the Orthocentre H

H
(

x1 tanA + x2 tanB + x3 tanC
tanA + tanB + tanC ,

y1 tanA + y2 tanB + y3 tanC
tanA + tanB + tanC

)

proof idea: Lemma 1 with λ1 = cotA
cotB , λ2 = cotB

cotC , λ3 = cotC
cotA
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Question 3. The Circumcentre

Coordinate of the Circumcentre O
O
(

x1(tanB+tanC)+x2(tanC+tanA)+x3(tanA+tanB)
2(tanA+tanB+tanC) ,

y1(tanB+tanC)+y2(tanC+tanA)+y3(tanA+tanB)
2(tanA+tanB+tanC)

)
proof idea: Lemma 1, O is Orthocenter of 4DEF
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Question 4. The Centre of Gravity G

Coordinate of the Centre of Gravity

G
(

x1 + x2 + x3
3 ,

y1 + y2 + y3
3

)

proof idea: Lemma 1 and intersection point of medians
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Question 5. The Intersection of the Symmedians

Definition of Symmedian
The three symmedian lines of a triangle are created by reflecting
the bisectors on their corresponding median lines. They meet at
the intersection point L.
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Question 5. The Intersection of the Symmedians
Coordinate

Coordinate of the Intersection of Symmedians L

L
(

a2

b2 x1 +
b2

c2 x2 +
c2

a2 x3
a2

b2 + b2

c2 + c2

a2

,
a2

b2 y1 +
b2

c2 y2 +
c2

a2 y3
a2

b2 + b2

c2 + c2

a2

)

erratum: Wrong in 2.1.3 - Apply Lemma 1 -
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Ansatz 1: The algebraic expression

Getting an algebraic expression

Use x3 and y3 as variables and pluck them into the second-order
curve ax2

3 + bx3y3 + cy2
3 + dx3 + ey3 + f = 0:

x3 =
(l + u + v)x − lx1 − ux2

v ,

y3 =
(l + u + v)y − ly1 − uy2

v .

proof idea: Solve (x , y) =
(

lx1+ux2+vx3
l+u+v , ly1+uy2+vy3

l+u+v

)
for x3, y3.

erratum: v missing in 2.2.1
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Question 3. The Circumcenters’ locus

Circumcentres’ locus
Locus is on the straight line.

y = −x1 − x2
y1 − y2

x +
x2

1 + y2
1 − x2

2 − y2
2

2y1 − 2y2

proof idea: Circumcentre is on perpendicular bisector of A and B.
missing argument: Line segment for ellipse; Ray for parabola;
(intercepted) line for hyperbola
proof idea: Circle through A and B such that its tangent to the
curve defines the range.
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Question 3. The Circumcenters’ locus

Different cases
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Question 4. The Centre of Gravitys’ locus

Centre of Gravitys’ locus
Has the same shape as the initial second-order curve:

a(3x − x1 − x2)
2 + b(3x − x1 − x2)(3y − y1 − y2)+

c(3y − y1 − y2)
2 + d(3x − x1 − x2) + e(3y − y1 − y2) + f = 0

proof idea: Apply G on ax2 + bxy + cy2 + dx + ey + f = 0
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All the other loci

Algebraic expression

Applying this method to the other three situations yields very
lengthy formulas.

erratum: The other formulas have to be fixed because of v .
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Ansatz 2: The Parametrization

Parametrising the Ellipse

{
x =

√
−f√
a sin t

y =
√
−f√
c cos t

Remark Use the reduced form of ellipse ax2 + cy2 = −f
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Question 1. The Incentres’ locus

Ellipse
Lengthy description, but works

Properties: continuous, bounded, contains A and B
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Question 1. The Incentres’ locus

Hyperbola and Parabola

Properties: continuous (2 parts for the 2 parts of hyperbola),
contains A and B, bounded for parabola
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Question 2. The Orthocenters’ locus

The Ellipse

Properties: Continous contains A and B, bounded
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Question 2. The Orthocenters’ locus

Hyperbola and Parabola

Properties: Continous (per hyperbola-branch), contains A and B,
not bounded
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Question 5. The Intersection of Symmedians’ locus

The Ellipse

Properties: Continous, contains A and B, bounded
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Question 5. The Intersection of Symmedians’ locus

Hyperbola
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Question 5. The Intersection of Symmedians’ locus

Hyperbola

Properties: Continous (per branch), bounded, Contains A,B
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Question 5. The Intersection of Symmedians’ locus

Parabola

Properties: Continous, Contains A,B, bounded
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Summary

Summary

1. Getting the right coordinates with Lemma 1
2. Algebraic expression by making x3 and y3 the new variables
3. Parametrizing the curves
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